Refine Your Search

Topic

Search Results

Technical Paper

A Study of the Homogeneous Charge Compression Ignition Combustion Process by Chemiluminescence Imaging

1999-10-25
1999-01-3680
An experimental study of the Homogeneous Charge Compression Ignition (HCCI) combustion process has been conducted by using chemiluminescence imaging. The major intent was to characterize the flame structure and its transient behavior. To achieve this, time resolved images of the naturally emitted light were taken. Emitted light was studied by recording its spectral content and applying different filters to isolate species like OH and CH. Imaging was enabled by a truck-sized engine modified for optical access. An intensified digital camera was used for the imaging. Some imaging was done using a streak-camera, capable of taking eight arbitrarily spaced pictures during a single cycle, thus visualizing the progress of the combustion process. All imaging was done with similar operating conditions and a mixture of n-heptane and iso-octane was used as fuel. Some 20 crank angles before Top Dead Center (TDC), cool flames were found to exist.
Technical Paper

Piston Temperature Measurement by Use of Thermographic Phosphors and Thermocouples in a Heavy-Duty Diesel Engine Run Under Partly Premixed Conditions

2005-04-11
2005-01-1646
Piston temperature experiments were conducted in a single-cylinder heavy-duty Diesel research engine, based on the Volvo Powertrain D12C engine both by use of optical temperature sensitive phosphor and of thermocouples mounted on the piston surface. In the former case, a thin coating of a suitable thermographic phosphor was applied to the areas on the piston surface to be investigated. The optical measurements of piston temperatures made involved use of an optical window and of an endoscope. The possibility of using optical fibres into guide light in and out of the engine was also investigated. Results of the optical and of the thermocouple measurements were compared and were also related to more global data with the aim of exploring the use of thermographic phosphors for piston- temperature measurements in Diesel engines. Thermographic phosphors thermometry was found to represent an alternative to the thermocouple method since it easily can be applied to various piston geometries.
Technical Paper

Laser Spectroscopic Investigation of Flow Fields and NO-Formation in a Realistic SI Engine

1998-02-23
980148
This paper presents results from a quantitative characterization of the NO distribution in a SI engine fueled with a stoichiometric iso-octane/air mixture. Different engine operating conditions were investigated and accurate results on NO concentrations were obtained from essentially the whole cylinder for crank angle ranges from ignition to the mid expansion stroke. The technique used to measure the two-dimensional NO concentration distributions was laser induced fluorescence utilizing a KrF excimer laser to excite the NO A-X (0,2) bandhead. Results were achieved with high temporal and spatial resolution. The accuracy of the measurements was estimated to be 30% for absolute concentration values and 20% for relative values. Images of NO distributions could also be used to evaluate the flame development. Both the mean and the variance of a combustion progress variable could be deduced.
Technical Paper

Development of High Speed Spectroscopic Imaging Techniques for the Time Resolved Study of Spark Ignition Phenomena

2000-10-16
2000-01-2833
This paper reports on the development of novel time resolved spectroscopic imaging techniques for the study of spark ignition phenomena in combustion cells and an SI-engine. The techniques are based on planar laser induced fluorescence imaging (PLIF) of OH radicals, on fuel tracer PLIF, and on chemiluminescence. The techniques could be achieved at repetition rates reaching several hundreds of kilo-Hz and were cycle resolved. These techniques offer a new path along which engine related diagnostics can be undertaken, providing a wealth of information on turbulent spark ignition.
X